Phagocytic cells metabolize 25-hydroxyvitamin D_3 to 10-oxo-19-nor-25-hydroxyvitamin D_3 and a new metabolite, $8\alpha,25$ -dihydroxy-9,10-seco-4,6,10(19)-cholestatrien-3-one

Takamune Hayashi, Sachiko Yamada*, Chisato Miyaura, Hirofumi Tanaka, Keiko Yamamoto*, Etsuko Abe, Hiroaki Takayama* and Tatsuo Suda

Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142 and *Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-01, Japan

Received 23 April 1987

The metabolism of 25-hydroxyvitamin D₃ [25(OH)D₃] was examined in several phagocytic cells including alveolar macrophages and myeloid leukemia cells (M1, HL-60 and U937). Phagocytic cells converted 25(OH)D₃ to 10-oxo-19-nor-25-hydroxyvitamin D₃ and a new metabolite. The former metabolite was dominant in shorter incubation periods (1 h), whereas the latter dominated over longer incubation periods (24 h). The new metabolite was produced from 25(OH)D₃ directly but not through 10-oxo-19-nor-25-hydroxyvitamin D₃. The new metabolite was unequivocally identified as 8α,25-dihydroxy-9,10-seco-4,6,10(19)-chole-statrien-3-one. These results suggest that phagocytic cells somehow promote oxidation of the triene part of vitamin D compounds.

Vitamin D metabolism; Phagocytic cell; Macrophage; 10-Oxo-19-nor-25-hydroxyvitamin D₃; 8α,25-Dihydroxy-9,10-seco-4,6,10(19)-cholestatrien-3-one

1. INTRODUCTION

Recently, much attention has been focused on the metabolism of vitamin D_3 in phagocytic cells. Phagocytic cells such as human blood leukocytes [1], monocytes [2] and tissue macrophages [1–3], and their transformed cells (HL-60 and U937) [4–7] have been reported to metabolize 25-hydroxyvitamin D_3 [25(OH) D_3] to more polar metabolites including 10-oxo-19-nor-25-hydroxyvitamin D_3 [10-oxo-19-nor-25(OH) D_3]. This metabolite has two isomers, 5E and 5Z forms. The former structure is similar to that of 1α ,25-dihydroxyvitamin D_3 [1α ,25(OH) $2D_3$], the active form of vitamin D_3 , because the 3β -hydroxyl function of (5E)-10-oxo-19-nor-25(OH) D_3 occupies the posi-

Correspondence address: T. Suda, Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan

tion of the 1α -hydroxyl function of $1\alpha,25(OH)_2D_3$. These results led us to consider that the 5E form of 10-oxo-19-nor- $25(OH)D_3$ might be responsible for inducing monocytic differentiation. It has also been pointed out that this metabolite migrates at a similar position to $1\alpha,25(OH)_2D_3$ in a straight-phase high-pressure liquid chromatography (HPLC) system using 10% 2-propanol in hexane, the traditional chromatographic system for separating $1\alpha,25(OH)_2D_3$. However, neither the role nor the regulation of its production has been established.

In the course of investigating the metabolism of $25(OH)D_3$ in phagocytic cells, we found a new metabolite of $25(OH)D_3$ which migrated at a similar position to 24R,25-dihydroxyvitamin D_3 [$24R,25(OH)_2D_3$] in four different HPLC systems. The metabolite has now been identified as $8\alpha,25$ -dihydroxy-9,10-seco-4,6,10(19)-cholestatrien-3-one. Here, we examined the relationship be-

tween the production of the two metabolites, 10-oxo-19-nor-25(OH)D₃ and the new metabolite, in phagocytic cells.

2. MATERIALS AND METHODS

2.1. Animals and drugs

Male mice, 6-8-week-old ddy strain, were obtained from Shizuoka Laboratory Animal Center (Shizuoka). $25(OH)D_3$, $1\alpha,25(OH)_2D_3$ and $24R,25(OH)_2D_3$ were kindly donated by Dr I. Matsunaga (Chugai Pharmaceutical Co., Tokyo). (5E)- and (5Z)-10-oxo-19-nor-25(OH)D₃ and 25,26S-dihydroxyvitamin D₃ [25,26S(OH)₂D₃] were synthesized in our laboratory. 25(OH)-[26,27- 3 H]D₃ (spec. act. 20.6 Ci/mmol) was obtained from Amersham (England).

2.2. Cells

Alveolar macrophages were collected by the tracheobronchial lavage method and purified as reported in [8]. The murine myeloid leukemia cell line (M1, clone T22) was kindly donated by Dr M. Hozumi (Saitama Cancer Center Research Institute, Saitama). The human promyelocytic leukemia cell line (HL-60) was provided by Dr H. Hemmi (Tohoku University, Sendai). The human monoblast-like lymphoma cell line (U937) was provided by Dr K. Takeda (Showa University, Tokyo).

2.3. Incubations of phagocytic cells with $25(OH)l^3H|D_3$

Phagocytic cells (7×10^6) were incubated with $1 \mu \text{Ci } 25(\text{OH})[^3\text{H}]\text{D}_3$ in 3.5 ml of a serum-free medium for 1-36 h at 37°C under 5% CO₂-95% air. The serum-free medium consisted of a mixture of RPMI 1640, Dulbecco's modified Eagle's MEM and Ham's F-12 (Gibco, Grand Island, NY) (2:1:1) containing 2.219 mg/ml of sodium bicarbonate, 100 µg/ml of streptomycin sulfate, 100 U/ml of penicillin G potassium, 8.47 ng/ml of selenous acid, 110 µg/ml of sodium pyruvate and 1 μg/ml of human transferrin (Sigma, St. Louis, MO). After incubation, the cells and medium were extracted together [9], and the samples were applied to a preparative silica Sep-Pak cartridge column (Waters, Milford, MA) [10]. The fraction containing dihydroxy metabolites of vitamin D₃ was subjected to Waters HPLC, pump model

6000 A, equipped with a Finepak Sil column $(0.46 \times 25 \text{ cm}, \text{Jasco}, \text{Tokyo})$. The column was eluted with 10% 2-propanol in hexane at a flow rate of 1 ml/min. Fractions were collected every 30 s and the radioactivity of the eluate was measured with a liquid scintillation counter.

3. RESULTS

Alveolar macrophages incubated for 1 h with $25(OH)[^3H]D_3$ produced 10-oxo-19-nor- $25(OH)D_3$ as a mixture of 5E and 5Z isomers (fig.1A). The natural 5E isomer was accompanied by the 5Z isomer photochemically produced, because a special precaution was not taken to avoid exposure

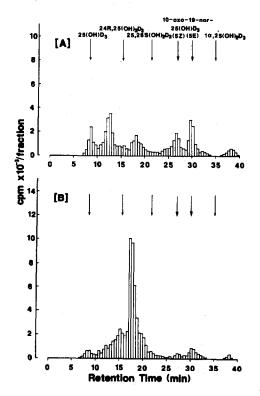


Fig.1. HPLC profiles of the metabolites of 25(OH)[³H]D₃ produced by alveolar macrophages incubated with 25(OH)[³H]D₃ for 1 h (A) and 24 h (B). Lipid extracts of the incubation mixture were first subjected to a silica Sep-Pak cartridge column. A radioactive fraction eluted with 60% ethyl acetate in *n*-hexane was applied to HPLC (Finepak Sil column, 0.46 × 25 cm, 10% 2-propanol in hexane, 1 ml/min, monitored at 265 nm). Arrows show the elution positions of the authentic vitamin D₃ compounds.

of the experimental vessels to room light during incubation and chromatographic separation. The production of the metabolite attained a maximum at 1 h and decreased thereafter (fig.2A). Formation of 10-oxo-19-nor-25(OH)D₃ was also observed when 25(OH)D₃ was allowed to stand for 1-72 h at 37° C under 5% CO₂-95% air in the medium without the cells (fig.2B). Formation of the metabolite in the medium alone increased time-dependently and attained a plateau at 48 h. The structures of (5E)- and (5Z)-10-oxo-19-nor-25(OH)D₃ were confirmed by ultraviolet (maximum at 310 nm), mass spectra [402(M⁺), 384, 369, 359, 273 and 177], and chemical synthesis.

When alveolar macrophages were incubated with 25(OH)[³H]D₃ for a longer time, another radioactive peak appeared at approx. 17 min (fig.1B). The production of the new metabolite increased time-dependently and reached a maximum at 12–24 h (fig.2A). This metabolite was not produced when 25(OH)D₃ was allowed to stand at 37°C in the medium without the cells.

The elution position of the new metabolite was

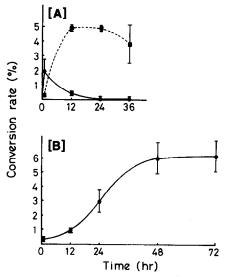


Fig.2. Time course of the change in the rate of conversion of 25(OH)D₃ to 10-oxo-19-nor-25(OH)D₃ (——) and the new metabolite (---). Alveolar macrophages were incubated with 25(OH)[³H]D₃ for 1-36 h (A). 25(OH)[³H]D₃ was allowed to stand in medium without macrophages for 1-72 h (B). Points and bars represent means ± SE of 3-6 independent sets of experiments.

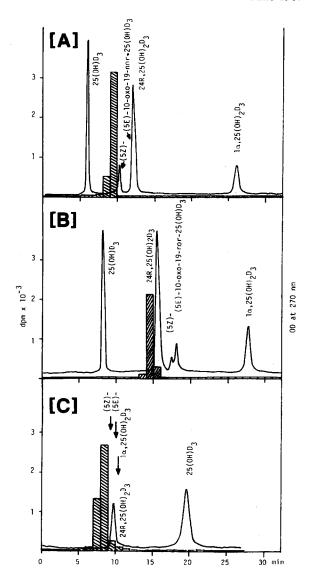


Fig. 3. Cochromatography of the new metabolite with authentic vitamin D₃ compounds on three different HPLC systems. The radioactive peak eluting at 17 min on the HPLC system shown in fig.1B was pooled and cochromatographed with authentic vitamin D₃ compounds on three different HPLC systems: (i) Lichrosorb Si 60 column (0.46 × 25 cm), 2% methanol in dichloromethane, 1 ml/min (A); (ii) same column as in (i), hexane/dichloromethane/methanol (16:2:1), 1 ml/min (B); (iii) Finepak Sil C₁₈ column (0.46 × 25 cm), 15% water in methanol, 1 ml/min (C). The solid line shows the absorbance at 270 nm and the bar represents radioactivity in each 1-min fraction. Arrows show the elution positions of the authentic compounds indicated.

compared with those of authentic vitamin D compounds in three different HPLC systems besides the one shown in fig.1: a straight-phase column with methanol-dichloromethane (fig.3A) and that with hexane-dichloromethane-methanol solvent systems (fig.3B), and a reverse-phase column with water-methanol (fig.3C). The new metabolite was eluted in the vicinity of $24R,25(OH)_2D_3$ in these three HPLC systems, but did not comigrate to the same position of $24R,25(OH)_2D_3$.

The time course of the production of the two metabolites (fig.2A) led us to examine the possibility that the new metabolite is derived from 10-oxo-19-nor-25(OH)D₃. 10-Oxo-19-nor-25(OH)-[³H]D₃ was synthesized by allowing 25(OH)[³H]D₃ to stand for 2 days at 37°C in the medium alone. When incubated with alveolar macrophages, 10-oxo-19-nor-25(OH)[³H]D₃ was not converted to the new metabolite at any incubation times (not shown).

Metabolism of 25(OH)D₃ was also studied in several lines of mouse and human myeloid leukemia cells (M1, U937, and HL-60). All of these myeloid cells produced the two metabolites, 10-oxo-19-nor-25(OH)D₃ and the new metabolite. The mode of production of the two metabolites by these cells was similar to that by alveolar

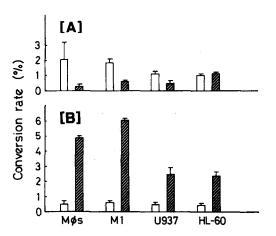


Fig. 4. Conversion of 25(OH)D₃ to 10-oxo-19-nor-25(OH)D₃ (A) and the new metabolite (B). Phagocytic cells (7×10^6) (alveolar macrophages, M1, U937, and HL-60) were incubated with 1 μ Ci 25(OH)[3 H]D₃ for 1 h (empty columns) or 24 h (hatched columns). Columns and bars represent means \pm SE of 3-4 independent sets of experiments.

Fig. 5. The structure of the new metabolite, 8α , 25-dihydroxy-9, 10-seco-4,6, 10(19)-cholestatrien-3-one.

macrophages; 10-oxo-19-nor-25(OH)D₃ was the dominant metabolite at 1 h, while the new metabolite was the major metabolite at 24 h (fig.4).

The new metabolite was isolated by incubating $25(OH)D_3$ with M1 cells and unequivocally identified as 8α ,25-dihydroxy-9,10-seco-4,6,10(19)-cholestatrien-3-one (fig.5) on the basis of its ultraviolet (maximum at 295 nm and minimum at 245 nm), infrared (presence of a conjugated carbonyl group at 1660 cm^{-1}), mass (M⁺: 414 m/e), and ¹H-NMR spectra. The stereochemistry of the hydroxyl group newly introduced into the 8-position was determined to be α by chemical synthesis. Details of the identification work have been submitted.

4. DISCUSSION

We found that the conversion of 25(OH)D₃ to 10-oxo-19-nor-25(OH)D3 occurred in the presence and absence of phagocytic cells. The time course of the conversion of 25(OH)D₃ to 10-oxo-19nor-25(OH)D₃ was, however, different between the presence and absence of alveolar macrophages. Formation of the metabolite attained a maximum at 1 h and decreased thereafter in the presence of macrophages, whereas it increased time-dependently in the absence of the cells. The rate of conversion of 25(OH)D₃ to the metabolite was much higher in the absence of macrophages. Using solubilized kidney mitochondria, Brown and DeLuca [11] have also reported that 10-oxo-19nor-25(OH)D₃ is produced when 25(OH)D₃ is allowed to stand in a buffer alone and also in a reconstitution system without the P-450 fraction. but that its formation is suppressed by the addition of antioxidants. From these results they suggested that the production of 10-oxo-19-nor-25(OH)D₃ occurs via a mechanism involving peroxidation.

Our preliminary experiments have also indicated that the addition of divalent iron (Fe^{2+}) with oxygen gas causes the conversion of $25(OH)D_3$ to (5E)-10-oxo-19-nor-25(OH)D₃ in the absence of phagocytic cells (unpublished). Phagocytic cells, however, somehow enhance this oxidation. These results confirm the suggestion of Brown and DeLuca [11].

Longer incubations (12–36 h) of phagocytic cells with $25(OH)[^3H]D_3$ produced another metabolite eluting at 17 min on HPLC. The new metabolite was unequivocally identified as 8α ,25-dihydroxy-9,10-seco-4,6,10(19)-cholesta-trien-3-one. In contrast to the production of 10-oxo-19-nor-25(OH)D₃, the new metabolite was formed only in the presence of phagocytic cells. In addition, the new metabolite was not produced when phagocytic cells were incubated with radioactive 10-oxo-19-nor-25(OH)D₃, suggesting that the new metabolite is formed from 25(OH)D₃ directly.

It is interesting that the new metabolite migrated in the vicinity of authentic $24R,25(OH)_2D_3$ in the four different HPLC systems (figs 1,3). During the preparation of the present manuscript, Reichel et al. [12] reported that HL-60 cells exposed to $1\alpha,25(OH)_2D_3$ produced $24,25(OH)_2D_3$ from $25(OH)D_3$. In our study, phagocytic cells were not exposed to $1\alpha,25(OH)_2D_3$ before incubation with $25(OH)_1^3H]D_3$, and the production of $24,25-(OH)_2^3H]D_3$ was not observed. It is also interesting that Reichel et al. [12] did not find the new metabolite under their experimental conditions. Further studies are needed to define the relationship between the formation of $24,25(OH)_2D_3$ and the new metabolite described here.

A recent report has indicated that $25(OH)D_3$ is metabolized to $1\alpha,25-(OH)_2D_3$ in human alveolar macrophages treated in vitro with interferon- γ [13]. In this study, we isolated the two metabolites oxidized at the triene part, 10-oxo-19-nor- $25(OH)D_3$ and $8\alpha,25-$ dihydroxy-9,10-seco-4,6, 10(19)-cholestatrien-3-one. In the classical metabolism of vitamin D_3 , the non-triene part was oxidized at the 1α , 24-, 25- and 26-positions. It is important to clarify the mechanism underlying the

differences of these two types of oxidation. The biological significance of the new metabolite must also be elucidated in the future.

ACKNOWLEDGEMENTS

This work was supported by Grants-In-Aid (6044086 and 61570894) from the Ministry of Science, Education and Culture of Japan.

REFERENCES

- [1] Cohen, M.S. and Gray, T.K. (1984) Proc. Natl. Acad. Sci. USA 81, 931-934.
- [2] Gray, T.K., Maddux, F.W., Lester, G.E. and Williams, M.E. (1982) Biochem. Biophys. Res. Commun. 109, 723-729.
- [3] Okabe, T., Ishizuka, S., Fujisawa, M., Watanabe, J. and Takaku, F. (1984) Biochem. Biophys. Res. Commun. 123, 822-830.
- [4] Okabe, T., Ishizuka, S., Fujisawa, M., Watanabe, J. and Takaku, F. (1985) Biochem. Biophys. Res. Commun. 127, 635-641.
- [5] Bar-Shavit, Z., Horst, R.L., Chappel, J.C., Ross, F.P., Gray, R.W. and Teitelbaum, S.L. (1986) Calcif. Tissue Int. 39, 328-333.
- [6] Gray, T.K., Millington, D.S., Maltby, D.A., Williams, M.E., Cohen, M.S. and Dodd, R.C. (1985) Proc. Natl. Acad. Sci. USA 82, 8218-8221.
- [7] Ishizuka, S., Matsui, T., Nakao, Y., Fujita, T., Okabe, T., Fujisawa, M., Watanabe, J., Takaku, F., Bishop, J.E., Reichel, H. and Norman, A.W. (1986) Eur. J. Biochem. 161, 233-239.
- [8] Sone, S., Bucana, C., Hoyer, L.C. and Fidler, I.J. (1981) Am. J. Pathol. 103, 234-346.
- [9] Mallon, J.P., Hamilton, J.G., Nauss-Karol, C., Karol, R.J., Ashley, C.J., Matuszewski, D.S., Tratnyek, C.A., Bryce, G.F. and Miller, O.N. (1980) Arch. Biochem. Biophys. 201, 277-285.
- [10] Adams, J.S., Clemens, T.L. and Holick, M.F. (1981) J. Chromatogr. 226, 198-201.
- [11] Brown, A. and DeLuca, H.F. (1985) J. Biol. Chem. 260, 14132-14136.
- [12] Reichel, H., Koeffler, H.P. and Norman, A.W. (1986) Arch. Biochem. Biophys. 251, 222-231.
- [13] Koeffler, H.P., Reichel, H., Bishop, J.E. and Norman, A.W. (1985) Biochem. Biophys. Res. Commun. 127, 596-603.